\( \newcommand{\cO}{\mathcal{O}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\GG}{\mathbb{G}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\LL}{\mathbb{L}}
\newcommand{\HH}{\mathbb{H}}
\newcommand{\EE}{\mathbb{E}}
\newcommand{\SP}{\mathbb{S}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\FF}{\mathbb{F}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\sF}{\mathscr{F}}
\newcommand{\sC}{\mathscr{C}}
\newcommand{\ts}{\textsuperscript}
\newcommand{\mf}{\mathfrak}
\newcommand{\cc}{\mf{c}}
\newcommand{\mg}{\mf{g}}
\newcommand{\ma}{\mf{a}}
\newcommand{\mh}{\mf{h}}
\newcommand{\mn}{\mf{n}}
\newcommand{\mc}{\mf{c}}
\newcommand{\ul}{\underline}
\newcommand{\mz}{\mf{z}}
\newcommand{\me}{\mf{e}}
\newcommand{\mff}{\mf{f}}
\newcommand{\mm}{\mf{m}}
\newcommand{\mt}{\mf{t}}
\newcommand{\pp}{\mf{p}}
\newcommand{\qq}{\mf{q}}
\newcommand{\gl}{\mf{gl}}
\newcommand{\msl}{\mf{sl}}
\newcommand{\so}{\mf{so}}
\newcommand{\mfu}{\mf{u}}
\newcommand{\su}{\mf{su}}
\newcommand{\msp}{\mf{sp}}
\renewcommand{\aa}{\mf{a}}
\newcommand{\bb}{\mf{b}}
\newcommand{\sR}{\mathscr{R}}
\newcommand{\lb}{\langle}
\newcommand{\rb}{\rangle}
\newcommand{\ff}{\mf{f}}
\newcommand{\ee}{\epsilon}
\newcommand{\heart}{\heartsuit}
\newcommand{\floor}[1]{\lfloor #1 \rfloor}
\newcommand{\ceil}[1]{\lceil #1 \rceil}
\newcommand{\pushout}{\arrow[ul, phantom, "\ulcorner", very near start]}
\newcommand{\pullback}{\arrow[dr, phantom, "\lrcorner", very near start]}
\newcommand{\simp}[1]{#1^{\Delta^{op}}}
\newcommand{\arrowtcupp}[2]{\arrow[bend left=50, ""{name=U, below,inner sep=1}]{#1}\arrow[Rightarrow,from=U,to=MU,"#2"]}
\newcommand{\arrowtclow}[2]{\arrow[bend right=50, ""{name=L,inner sep=1}]{#1}\arrow[Rightarrow,from=LM,to=L]{}[]{#2}} % if you want to change some parameter of the label.
\newcommand{\arrowtcmid}[2]{\arrow[""{name=MU,inner sep=1},""{name=LM,below,inner sep=1}]{#1}[pos=.1]{#2}}
\newcommand{\dummy}{\textcolor{white}{\bullet}}
%for adjunction
\newcommand{\adjunction}[4]{
#1\hspace{2pt}\colon #2 \leftrightharpoons #3 \hspace{2pt}\colon #4
}
%Math operators
\newcommand{\aug}{\mathop{\rm aug}\nolimits}
\newcommand{\MC}{\mathop{\rm MC}\nolimits}
\newcommand{\art}{\mathop{\rm art}\nolimits}
\newcommand{\DiGrph}{\mathop{\rm DiGrph}\nolimits}
\newcommand{\FMP}{\mathop{\rm FMP}\nolimits}
\newcommand{\CAlg}{\mathop{\rm CAlg}\nolimits}
\newcommand{\perf}{\mathop{\rm perf}\nolimits}
\newcommand{\cof}{\mathop{\rm cof}\nolimits}
\newcommand{\fib}{\mathop{\rm fib}\nolimits}
\newcommand{\Thick}{\mathop{\rm Thick}\nolimits}
\newcommand{\Orb}{\mathop{\rm Orb}\nolimits}
\newcommand{\ko}{\mathop{\rm ko}\nolimits}
\newcommand{\Spf}{\mathop{\rm Spf}\nolimits}
\newcommand{\Spc}{\mathop{\rm Spc}\nolimits}
\newcommand{\sk}{\mathop{\rm sk}\nolimits}
\newcommand{\cosk}{\mathop{\rm cosk}\nolimits}
\newcommand{\holim}{\mathop{\rm holim}\nolimits}
\newcommand{\hocolim}{\mathop{\rm hocolim}\nolimits}
\newcommand{\Pre}{\mathop{\rm Pre}\nolimits}
\newcommand{\THR}{\mathop{\rm THR}\nolimits}
\newcommand{\THH}{\mathop{\rm THH}\nolimits}
\newcommand{\Fun}{\mathop{\rm Fun}\nolimits}
\newcommand{\Loc}{\mathop{\rm Loc}\nolimits}
\newcommand{\Bord}{\mathop{\rm Bord}\nolimits}
\newcommand{\Cob}{\mathop{\rm Cob}\nolimits}
\newcommand{\Set}{\mathop{\rm Set}\nolimits}
\newcommand{\Ind}{\mathop{\rm Ind}\nolimits}
\newcommand{\Sind}{\mathop{\rm Sind}\nolimits}
\newcommand{\Ext}{\mathop{\rm Ext}\nolimits}
\newcommand{\sd}{\mathop{\rm sd}\nolimits}
\newcommand{\Ex}{\mathop{\rm Ex}\nolimits}
\newcommand{\Out}{\mathop{\rm Out}\nolimits}
\newcommand{\Cyl}{\mathop{\rm Cyl}\nolimits}
\newcommand{\Path}{\mathop{\rm Path}\nolimits}
\newcommand{\Ch}{\mathop{\rm Ch}\nolimits}
\newcommand{\SSet}{\mathop{\rm \Set^{\Delta^{op}}}\nolimits}
\newcommand{\Sq}{\mathop{\rm Sq}\nolimits}
\newcommand{\Free}{\mathop{\rm Free}\nolimits}
\newcommand{\Map}{\mathop{\rm Map}\nolimits}
\newcommand{\Chain}{\mathop{\rm Ch}\nolimits}
\newcommand{\LMap}{\mathop{\rm LMap}\nolimits}
\newcommand{\RMap}{\mathop{\rm RMap}\nolimits}
\newcommand{\Tot}{\mathop{\rm Tot}\nolimits}
\newcommand{\MU}{\mathop{\rm MU}\nolimits}
\newcommand{\MSU}{\mathop{\rm MSU}\nolimits}
\newcommand{\MSp}{\mathop{\rm MSp}\nolimits}
\newcommand{\MSO}{\mathop{\rm MSO}\nolimits}
\newcommand{\MO}{\mathop{\rm MO}\nolimits}
\newcommand{\BU}{\mathop{\rm BU}\nolimits}
\newcommand{\BSU}{\mathop{\rm BSU}\nolimits}
\newcommand{\BSp}{\mathop{\rm BSp}\nolimits}
\newcommand{\BGL}{\mathop{\rm BGL}\nolimits}
\newcommand{\BSO}{\mathop{\rm BSO}\nolimits}
\newcommand{\BO}{\mathop{\rm BO}\nolimits}
\newcommand{\Tor}{\mathop{\rm Tor}\nolimits}
\newcommand{\Cotor}{\mathop{\rm Cotor}\nolimits}
\newcommand{\imag}{\mathop{\rm Im}\nolimits}
\newcommand{\real}{\mathop{\rm Re}\nolimits}
\newcommand{\Cat}{\mathop{\rm Cat}\nolimits}
\newcommand{\Fld}{\mathop{\rm Fld}\nolimits}
\newcommand{\Frac}{\mathop{\rm Frac}\nolimits}
\newcommand{\Dom}{\mathop{\rm Dom}\nolimits}
\newcommand{\Hotc}{\mathop{\rm Hotc}\nolimits}
\newcommand{\Top}{\mathop{\rm Top}\nolimits}
\newcommand{\Ring}{\mathop{\rm Ring}\nolimits}
\newcommand{\CRing}{\mathop{\rm CRing}\nolimits}
\newcommand{\CGHaus}{\mathop{\rm CGHaus}\nolimits}
\newcommand{\Alg}{\mathop{\rm Alg}\nolimits}
\newcommand{\Bool}{\mathop{\rm Bool}\nolimits}
\newcommand{\hTop}{\mathop{\rm hTop}\nolimits}
\newcommand{\Nat}{\mathop{\rm Nat}\nolimits}
\newcommand{\Rel}{\mathop{\rm Rel}\nolimits}
\newcommand{\Mod}{\mathop{\rm Mod}\nolimits}
\newcommand{\Space}{\mathop{\rm Space}\nolimits}
\newcommand{\Vect}{\mathop{\rm Vect}\nolimits}
\newcommand{\FinVect}{\mathop{\rm FinVect}\nolimits}
\newcommand{\Matr}{\mathop{\rm Matr}\nolimits}
\newcommand{\Ab}{\mathop{\rm Ab}\nolimits}
\newcommand{\Gr}{\mathop{\rm Gr}\nolimits}
\newcommand{\Grp}{\mathop{\rm Grp}\nolimits}
\newcommand{\Hol}{\mathop{\rm Hol}\nolimits}
\newcommand{\Gpd}{\mathop{\rm Gpd}\nolimits}
\newcommand{\Grpd}{\mathop{\rm Gpd}\nolimits}
\newcommand{\Mon}{\mathop{\rm Mon}\nolimits}
\newcommand{\FinSet}{\mathop{\rm FinSet}\nolimits}
\newcommand{\Sch}{\mathop{\rm Sch}\nolimits}
\newcommand{\AffSch}{\mathop{\rm AffSch}\nolimits}
\newcommand{\Idem}{\mathop{\rm Idem}\nolimits}
\newcommand{\SIdem}{\mathop{\rm SIdem}\nolimits}
\newcommand{\Aut}{\mathop{\rm Aut}\nolimits}
\newcommand{\Ord}{\mathop{\rm Ord}\nolimits}
\newcommand{\coker}{\mathop{\rm coker}\nolimits}
\newcommand{\ch}{\mathop{\rm char}\nolimits}%characteristic
\newcommand{\Sym}{\mathop{\rm Sym}\nolimits}
\newcommand{\adj}{\mathop{\rm adj}\nolimits}
\newcommand{\dil}{\mathop{\rm dil}\nolimits}
\newcommand{\Cl}{\mathop{\rm Cl}\nolimits}
\newcommand{\Diff}{\mathop{\rm Diff}\nolimits}
\newcommand{\End}{\mathop{\rm End}\nolimits}
\newcommand{\Hom}{\mathop{\rm Hom}\nolimits}% preferred
\newcommand{\Gal}{\mathop{\rm Gal}\nolimits}
\newcommand{\Pos}{\mathop{\rm Pos}\nolimits}
\newcommand{\Ad}{\mathop{\rm Ad}\nolimits}
\newcommand{\GL}{\mathop{\rm GL}\nolimits}
\newcommand{\SL}{\mathop{\rm SL}\nolimits}
\newcommand{\vol}{\mathop{\rm vol}\nolimits}
\newcommand{\reg}{\mathop{\rm reg}\nolimits}
\newcommand{\Or}{\text{O}}
\newcommand{\U}{\mathop{\rm U}\nolimits}
\newcommand{\SOr}{\mathop{\rm SO}\nolimits}
\newcommand{\SU}{\mathop{\rm SU}\nolimits}
\newcommand{\Spin}{\mathop{\rm Spin}\nolimits}
\newcommand{\Sp}{\mathop{\rm Sp}\nolimits}
\newcommand{\Int}{\mathop{\rm Int}\nolimits}
\newcommand{\im}{\mathop{\rm im}\nolimits}
\newcommand{\dom}{\mathop{\rm dom}\nolimits}
\newcommand{\di}{\mathop{\rm div}\nolimits}
\newcommand{\cod}{\mathop{\rm cod}\nolimits}
\newcommand{\colim}{\mathop{\rm colim}\nolimits}
\newcommand{\ad}{\mathop{\rm ad}\nolimits}
\newcommand{\PSL}{\mathop{\rm PSL}\nolimits}
\newcommand{\PGL}{\mathop{\rm PGL}\nolimits}
\newcommand{\sep}{\mathop{\rm sep}\nolimits}
\newcommand{\MCG}{\mathop{\rm MCG}\nolimits}
\newcommand{\oMCG}{\mathop{\rm MCG^+}\nolimits}
\newcommand{\Spec}{\mathop{\rm Spec}\nolimits}
\newcommand{\rank}{\mathop{\rm rank}\nolimits}
\newcommand{\diverg}{\mathop{\rm div}\nolimits}%Divergence
\newcommand{\disc}{\mathop{\rm disc}\nolimits}
\newcommand{\sign}{\mathop{\rm sign}\nolimits}
\newcommand{\Arf}{\mathop{\rm Arf}\nolimits}
\newcommand{\Pic}{\mathop{\rm Pic}\nolimits}
\newcommand{\Tr}{\mathop{\rm Tr}\nolimits}
\newcommand{\res}{\mathop{\rm res}\nolimits}
\newcommand{\Proj}{\mathop{\rm Proj}\nolimits}
\newcommand{\mult}{\mathop{\rm mult}\nolimits}
\newcommand{\N}{\mathop{\rm N}\nolimits}
\newcommand{\lk}{\mathop{\rm lk}\nolimits}
\newcommand{\Pf}{\mathop{\rm Pf}\nolimits}
\newcommand{\sgn}{\mathop{\rm sgn}\nolimits}
\newcommand{\grad}{\mathop{\rm grad}\nolimits}
\newcommand{\lcm}{\mathop{\rm lcm}\nolimits}
\newcommand{\Ric}{\mathop{\rm Ric}\nolimits}
\newcommand{\Hess}{\mathop{\rm Hess}\nolimits}
\newcommand{\sn}{\mathop{\rm sn}\nolimits}
\newcommand{\cut}{\mathop{\rm cut}\nolimits}
\newcommand{\tr}{\mathop{\rm tr}\nolimits}
\newcommand{\codim}{\mathop{\rm codim}\nolimits}
\newcommand{\ind}{\mathop{\rm index}\nolimits}
\newcommand{\rad}{\mathop{\rm rad}\nolimits}
\newcommand{\Rep}{\mathop{\rm Rep}\nolimits}
\newcommand{\Lie}{\mathop{\rm Lie}\nolimits}
\newcommand{\Der}{\mathop{\rm Der}\nolimits}
\newcommand{\hgt}{\mathop{\rm ht}\nolimits}
\newcommand{\Ider}{\mathop{\rm Ider}\nolimits}
\newcommand{\id}{\mathop{\rm id}\nolimits} \)
K-THEORY AND FREDHOLM OPERATORS
ISHAN LEVY
1. Introduction
Given a compact space \(X\), we can consider the commutative monoid of complex vector
bundles on \(X\) under the Whitney sum operation. We can force it to become a group in the
universal way, giving a group called \(K(X)\). This is a functor, so we can ask whether it is
representable. If it is, the representing object should be a group up to homotopy. But
in this case, it is represented by the space of Fredholm operators \(\sF \) on Hilbert space \(H\).
In particular the composition operation is a commutative group operation on \(\sF \) up to
homotopy.
\(K(X)\) for a point is just \(\ZZ \), so in particular the components of the space of Fredholm operators should
correspond to the integers, and this function from Fredholm operators to \(\ZZ \) is exactly the
index of an operator. Hence in general we will want to construct a natural isomorphism
\(\ind : [-,\sF ] \to K(-)\).
To do this, first suppose that we have a map \(f:X \to \sF \), and we fix a point \(x \in X\). We should note that
the kernel of \(f(x) = f_x\) varies continuously in \(X\), in the sense that if \(V\) is a subspace on which \(f_x\) is
injective, then nearby points will also be injective on \(V\). In particular, as \(X\) is compact,
we can find a \(V\) of finite codimension in \(H\) such that \(f_x\) is injective on \(V\) for all \(x \in X\). Then \(f_x(V)\) is a
subbundle of \(X \times H\), and we can consider \(H/f_X(V)\), the bundle where the fibre of \(x\) is \(H/f_x(V)\). If \(V\) is codimension
\(k\), we define \(\ind _V(f) = k-[H/f_X(V)]\). To see this is well defined, we only need to observe that if we choose a
codimension \(n\) subspace \(U \subset V\) then \(H/f_X(U) \cong f_X(U)^\perp \cong f_X(V)^\perp \oplus f_X(U ^\perp \cap V) \cong H/f_X(V) \oplus \CC ^n \times X\). We thus have \(k-[H/f_X(V)] = k+n - [H/f_X(U)]\), so for any \(V,W\), \(\ind _V(f) = \ind _{V\cap W}(f) = \ind _{W}(f)\). Moreover index is clearly
natural.
Homotopy invariance comes from the commutative diagram:
The vertical maps are isomorphisms and their composites are the identity on \([X,\sF ]\) and \(K(X)\), so \(\ind (f_0) = \ind (f_1)\). To see \(\ind \) is a
homomorphism, let \(f,g: X \to \sF \). Then choose \(U,V\) to be finite codimension subspaces on which \(f,g\) are respectively
injective and such that \(g_X(V) \subset U\), so that \(fg\) is injective on \(V\). Then there is an exact sequence \(0 \to U/g_X(V) \to H/fg_X(V) \to H/f_X(U) \to 0\), so \(\ind (fg) = \codim V - [H/fg_X(V)] = \codim V - [U/g_X(V)] - [H/f_X(U)]\)
\(= \codim U + \codim V -[H/g_X(U)] - [H/f_X(U)] = \ind (f) + \ind (g)\).
For surjectivity of the index, since it is a homomorphism we need every vector bundle \(V\) to be in
the image, as well as \(n \in \ZZ \). The latter can be done by sending \(X\) to a single operator of index
\(n\). To see \(V\) is in the image, find a vector bundle \(W\) such that \(V \oplus W = \CC ^n \times X\) and let \(\pi _V, \pi _W\) be the projection
maps. Now send \(x\) to the operator on \(H\otimes \CC ^n \cong H\) sending \(e_i \otimes v\) to \(e_{i+1} \otimes{\pi _W(v)} + e_i \otimes \pi _V(v)\). The index is \(-W\) which is \(V\) up to a trivial
bundle.
Finally let’s examine the kernel of the index. If something is in the kernel, there must be a finite
codimension subspace \(U \subset H\) with \(H/f_X(U)\) trivial. Let \(e_1,\dots e_n\) be a basis of \(U^\perp \) and let \(s_1,\dots s_n\) be trivializing sections of \(f_X(U)^\perp \). Consider
the homotopy that has \(f_{x,t}(e_i) = f_x(e_i)(1-t) + s_i t\). It homotopes \(f\) to something that is an isomorphism on \(H\). Thus we have an
exact sequence \([X ,\GL (H)] \to [X,\sF ] \to K(X) \to 0\). However, by Kuiper’s theorem, \(\GL (H)\) is contractible, so the index is a natural
isomorphism.